pandas常用操作

pandas讀取數據:

import pandas as pd
dataPath = 'test.csv'
data = pd.read_csv(dataPath , sep=',', iterator=False,encoding='utf-8', header=None)
# 其中dataPath 代表讀取的文件的路徑,
#     sep代表文件每行分隔的符號
#     iterator代表文件讀取時以迭代的方式進行,設置為True可以減少內存占用
#     encoding代表讀取文件的字符編碼格式
#     header設置為None代表數據中沒有列名,讀取時可以忽略掉列名,默認為infer,其將第一行作為標簽

pandas查看數據:

print data.head()    # 查看數據的前5行,括號中可以填數字,代表查看的行數
print data.tail()    # 查看數據的后5行,括號中可以填數字,代表查看的行數
print data.shape    # 查看data的大小,結果如(1024,10)

pandas刪除行、列:

#  刪除行,刪除了data中的第16、17行
data.drop([16,17],inplace=True)   # inplace設置為True則原數據也改變
# 等價于
data.drop(data.index[[16,17]],inplace=True)

# 刪除列,刪除data中標簽為age的列
del data['age']
# 等價于下式,均可添加inplace參數
data.drop(['age'],axis=1)

# 刪除方法詳見  http://www.lxweimin.com/p/67e67c7034f6

pandas排序:

data = data.sort_values(by=['age', 'name'])  # 根據by中的參數名進行排序

pandas合并列表

data_12 = pd.merge(data1, data2, on=['age', 'name'], how='outer')
#  將data1和data2兩個DataFrame類型的進行合并,on中代表合并時的主鍵,
#  how中可選參數為outer、inner
#  outer則得到并集,空缺部分為nan,inner為交集

pandas采樣

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)
# 例子如下
import pandas as pd  
df.sample(n=20000)  

n 是要抽取的行數。(例如 n=20000 時,抽取其中的 2W 行)
frac 是抽取的比列。(有一些時候,我們并對具體抽取的行數不關系,我們想抽取其中的百分比,這個時候就可以選擇使用 frac,例如 frac=0.8,就是抽取其中 80%)
replace 抽樣后的數據是否代替原 DataFrame()
weights 這個是每個樣本的權重,具體可以看官方文檔說明。
random_state 隨機數

pandas保存數據:

data.to_csv('baseinfo2.csv', index=False)
# 將data保存到baseinfo2.csv中
# 其中index設置為False為了防止寫入文件時寫入索引。
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,119評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,382評論 3 415
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,038評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,853評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,616評論 6 408
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,112評論 1 323
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,192評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,355評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,869評論 1 334
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,727評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,928評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,467評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,165評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,570評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,813評論 1 282
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,585評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,892評論 2 372

推薦閱讀更多精彩內容