R語言基礎筆記1——關于數據處理的一些

雙11買的米家電火鍋到了,今天和老婆在家吃了火鍋,吼吼吼!~排骨、羔羊肉、魚丸、蟹足棒、老油條、生菜、土豆、豆腐還有各種菌菇,超級滿足。

吃完當然要繼續學習R語言了,因為最近的數據挖掘中,深感自己的基礎太差,很多時候一行代碼要查很多package的help文檔,非常不流暢,所以要一邊做生信挖掘,一邊給自己的R語言補課(linux表示不服)。下面就一邊學習,一遍羅列一些我之前搞不靈清的函數和package吧。

1.seq()函數

> seq(2,10)
[1]  2  3  4  5  6  7  8  9 10
#產生從2到10的向量,注意中間是‘,’而不是‘:’!
> seq(5,65,by=2)
 [1]  5  7  9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65
#以公差為2,去遞增產生向量
> seq(5,65,length = 10)
 [1]  5.00000 11.66667 18.33333 25.00000 31.66667 38.33333 45.00000 51.66667 58.33333 65.00000
#從5到65遞增,一共存在10個向量,公差函數自己幫忙算

體會:seq()很方便可以按照自己的方式取出想要的向量,比如取單雙的時候,可以使用。

2.which()函數

> a <- c(2,3,4,2,5,1,6,3,2,5,8,5,7,3)
> which.max(a) #變量a中最大的向量所處的位置
[1] 11
> which.min(a) #變量a中最小的向量所處的位置
[1] 6
> which(a==2) #變量a中,等于2的向量所處的位置
[1] 1 4 9
> a[which(a==2)] #將“變量a中等于2的向量所處的位置”上面的向量列出
[1] 2 2 2
> which(a>5) #變量a中大于5的向量所處的位置
[1]  7 11 13
> a[which(a>5)] #將“變量a中大于5的向量所處的位置”上面的向量列出
[1] 6 8 7

體會:which()函數可以明確變量中,具體條件的向量所處的位置。

3.rev()函數,sort()函數

> a=1:20
> a
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
[15] 15 16 17 18 19 20
> rev(a)  #將變量a逆向排序
 [1] 20 19 18 17 16 15 14 13 12 11 10  9  8  7
[15]  6  5  4  3  2  1
> a=c(2,3,4,2,5,1,6,3,2,5,8,5,7,3)
> sort(a)  #將變量a從小到大排序
 [1] 1 2 2 2 3 3 3 4 5 5 5 6 7 8
> rev(sort(a))  #將變量a從大到小排序
 [1] 8 7 6 5 5 5 4 3 3 3 2 2 2 1
> a=c(2,3,4,2,5,1,6,3,2,5,8,5,7,3)
> rev(a)  #單純逆向排列,并不排序
 [1] 3 7 5 8 5 2 3 6 1 5 2 4 3 2

體會:rev()函數簡單說就是把數據集中的排列反過來;sort()函數簡單說就是從小到大將數據集中的向量重新排序。

4.matrix()函數

> a1=c(1:12)
> matrix(a1,nrow = 3,ncol = 4)
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> matrix(a1,nrow = 4,ncol = 3,byrow = T)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

體會:matrix()函數,默認是按照列,依次排列的,如果需要按照行,依次排列,就需要“byrow = T”。

5.t()函數,矩陣加減

> a=matrix(1:12,nrow = 3,ncol = 4)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> t(a)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
> a=b=matrix(1:12,nrow = 3,ncol = 4)
> a+b
     [,1] [,2] [,3] [,4]
[1,]    2    8   14   20
[2,]    4   10   16   22
[3,]    6   12   18   24
> a-b
     [,1] [,2] [,3] [,4]
[1,]    0    0    0    0
[2,]    0    0    0    0
[3,]    0    0    0    0

體會:t()函數,行和列互換。

6.diag()函數

> a=matrix(1:16,nrow = 4,ncol = 4)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16
> diag(a)
[1]  1  6 11 16
> diag(diag(a))
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    6    0    0
[3,]    0    0   11    0
[4,]    0    0    0   16
> diag(4)
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

體會:從來沒用過diag()函數,大概就是方陣(行和列相等的矩陣)取對角線的數據,或者列出方陣的對角線數據。

7.向量轉化為數組,dim()函數

> x=c(1:6)
> x
[1] 1 2 3 4 5 6
> is.vector(x)
[1] TRUE
> is.array(x)
[1] FALSE
> dim(x) <- c(2,3)
> x
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
> is.array(x)
[1] TRUE
> is.matrix(x)
[1] TRUE
> dim(x)
[1] 2 3

體會:dim()函數,可以直接看矩陣的行數和列數,也可以給予向量縱深,使其具有行和列,從而變成數組和矩陣。

好吧,今天先策到這里,明天繼續,影像科~~~~~

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,748評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,165評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 175,595評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,633評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,435評論 6 405
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,943評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,035評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,175評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,713評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,599評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,788評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,303評論 5 358
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,034評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,412評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,664評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,408評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,747評論 2 370

推薦閱讀更多精彩內容