1異步處理
場景說明:用戶注冊后,需要發注冊郵件和注冊短信。傳統的做法有兩種:
- 串行方式:將注冊信息寫入數據庫成功后,發送注冊郵件,再發送注冊短信。以上三個任務全部完成后,返回給客戶端。
- 并行方式:將注冊信息寫入數據庫成功后,發送注冊郵件的同時,發送注冊短信。以上三個任務完成后,返回給客戶端。與串行的差別是,并行的方式可以提高處理的時間。
假設三個業務節點每個使用50毫秒鐘,不考慮網絡等其他開銷,則串行方式的時間是150毫秒,并行的時間可能是100毫秒。
因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。并行方式處理的請求量是10次(1000/100)。
小結:如以上案例描述,傳統的方式系統的性能(并發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?
引入消息隊列,將不是必須的業務邏輯,異步處理。改造后的架構如下:
按照以上約定,用戶的響應時間相當于是注冊信息寫入數據庫的時間,也就是50毫秒。注冊郵件,發送短信寫入消息隊列后,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變后,系統的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了兩倍。
2應用解耦
場景說明:用戶下單后,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的接口。如下圖:
傳統模式的缺點:
- 假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失?。?/li>
- 訂單系統與庫存系統耦合;
如何解決以上問題呢?引入應用消息隊列后的方案,如下圖:
- 訂單系統:用戶下單后,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功。
- 庫存系統:訂閱下單的消息,采用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作。
- 假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單后,訂單系統寫入消息隊列就不再關心其他的后續操作了。實現訂單系統與庫存系統的應用解耦。
3流量削鋒
流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛。
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。
- 可以控制活動的人數;
- 可以緩解短時間內高流量壓垮應用;
- 用戶的請求,服務器接收后,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面;
- 秒殺業務根據消息隊列中的請求信息,再做后續處理。
4日志處理
日志處理是指將消息隊列用在日志處理中,比如Kafka的應用,解決大量日志傳輸的問題。架構簡化如下:
- 日志采集客戶端,負責日志數據采集,定時寫受寫入Kafka隊列;
- Kafka消息隊列,負責日志數據的接收,存儲和轉發;
- 日志處理應用:訂閱并消費kafka隊列中的日志數據;
以下是新浪kafka日志處理應用案例:
- Kafka:接收用戶日志的消息隊列。
- Logstash:做日志解析,統一成JSON輸出給Elasticsearch。
- Elasticsearch:實時日志分析服務的核心技術,一個schemaless,實時的數據存儲服務,通過index組織數據,兼具強大的搜索和統計功能。
- Kibana:基于Elasticsearch的數據可視化組件,超強的數據可視化能力是眾多公司選擇ELK stack的重要原因。
5消息通訊
消息通訊是指,消息隊列一般都內置了高效的通信機制,因此也可以用在純的消息通訊。比如實現點對點消息隊列,或者聊天室等。
點對點通訊:
客戶端A和客戶端B使用同一隊列,進行消息通訊。
聊天室通訊:
客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發布和接收。實現類似聊天室效果。
以上實際是消息隊列的兩種消息模式,點對點或發布訂閱模式。