消息隊列應用場景

1異步處理

場景說明:用戶注冊后,需要發注冊郵件和注冊短信。傳統的做法有兩種:

  • 串行方式:將注冊信息寫入數據庫成功后,發送注冊郵件,再發送注冊短信。以上三個任務全部完成后,返回給客戶端。
image
  • 并行方式:將注冊信息寫入數據庫成功后,發送注冊郵件的同時,發送注冊短信。以上三個任務完成后,返回給客戶端。與串行的差別是,并行的方式可以提高處理的時間。
image

假設三個業務節點每個使用50毫秒鐘,不考慮網絡等其他開銷,則串行方式的時間是150毫秒,并行的時間可能是100毫秒。

因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。并行方式處理的請求量是10次(1000/100)。

小結:如以上案例描述,傳統的方式系統的性能(并發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?

引入消息隊列,將不是必須的業務邏輯,異步處理。改造后的架構如下:

image

按照以上約定,用戶的響應時間相當于是注冊信息寫入數據庫的時間,也就是50毫秒。注冊郵件,發送短信寫入消息隊列后,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變后,系統的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了兩倍。

2應用解耦

場景說明:用戶下單后,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的接口。如下圖:

image

傳統模式的缺點:

  1. 假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失?。?/li>
  2. 訂單系統與庫存系統耦合;

如何解決以上問題呢?引入應用消息隊列后的方案,如下圖:

image
  • 訂單系統:用戶下單后,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功。
  • 庫存系統:訂閱下單的消息,采用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作。
  • 假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單后,訂單系統寫入消息隊列就不再關心其他的后續操作了。實現訂單系統與庫存系統的應用解耦。

3流量削鋒

流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛。

應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。

  1. 可以控制活動的人數;
  2. 可以緩解短時間內高流量壓垮應用;
image
  1. 用戶的請求,服務器接收后,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面;
  2. 秒殺業務根據消息隊列中的請求信息,再做后續處理。

4日志處理

日志處理是指將消息隊列用在日志處理中,比如Kafka的應用,解決大量日志傳輸的問題。架構簡化如下:

image
  1. 日志采集客戶端,負責日志數據采集,定時寫受寫入Kafka隊列;
  2. Kafka消息隊列,負責日志數據的接收,存儲和轉發;
  3. 日志處理應用:訂閱并消費kafka隊列中的日志數據;

以下是新浪kafka日志處理應用案例:

image
  1. Kafka:接收用戶日志的消息隊列。
  2. Logstash:做日志解析,統一成JSON輸出給Elasticsearch。
  3. Elasticsearch:實時日志分析服務的核心技術,一個schemaless,實時的數據存儲服務,通過index組織數據,兼具強大的搜索和統計功能。
  4. Kibana:基于Elasticsearch的數據可視化組件,超強的數據可視化能力是眾多公司選擇ELK stack的重要原因。

5消息通訊

消息通訊是指,消息隊列一般都內置了高效的通信機制,因此也可以用在純的消息通訊。比如實現點對點消息隊列,或者聊天室等。

點對點通訊:


image

客戶端A和客戶端B使用同一隊列,進行消息通訊。

聊天室通訊:


image

客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發布和接收。實現類似聊天室效果。

以上實際是消息隊列的兩種消息模式,點對點或發布訂閱模式。

?著作權歸作者所有,轉載或內容合作請聯系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 227,663評論 6 531
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,125評論 3 414
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 175,506評論 0 373
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,614評論 1 307
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,402評論 6 404
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 54,934評論 1 321
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,021評論 3 440
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,168評論 0 287
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,690評論 1 333
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,596評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,784評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,288評論 5 357
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,027評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,404評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,662評論 1 280
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,398評論 3 390
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,743評論 2 370

推薦閱讀更多精彩內容

  • 原文http://blog.csdn.net/konglongaa/article/details/5220827...
    不是山峰的鋒閱讀 870評論 0 1
  • 一、 消息隊列概述 消息隊列中間件是分布式系統中重要的組件,主要解決應用耦合、異步消息、流量削鋒等問題。實現高性能...
    步積閱讀 57,030評論 10 138
  • 以下是消息隊列以下的大綱,本文主要介紹消息隊列概述,消息隊列應用場景和消息中間件示例(電商,日志系統)。 本次分享...
    文檔隨手記閱讀 1,898評論 0 28
  • Spring Cloud為開發人員提供了快速構建分布式系統中一些常見模式的工具(例如配置管理,服務發現,斷路器,智...
    卡卡羅2017閱讀 134,776評論 18 139
  • 1 消息隊列概述 消息隊列中間件是分布式系統中重要的組件,主要解決應用耦合,異步消息,流量削鋒等問題。實現高性能,...
    Bobby0322閱讀 10,893評論 0 24