最近在接觸一些關深度強化學習(DRL)的內容,本文是學習DRL過程中對Demo的復現與理解。相關原理推薦李宏毅的Q-Learning強化學習和深度強化學習課程。
強化學習中有兩種重要的方法:Policy Gradients和Q-learning。其中Policy Gradients方法直接預測在某個環境下應該采取的Action,而Q-learning方法預測某個環境下所有Action的期望值(即Q值)。一般來說,Q-learning方法只適合有少量離散取值的Action環境,而Policy Gradients方法適合有連續取值的Action環境。在與深度學習方法結合后,這兩種算法就變成了Policy Network和DQN(Deep Q-learning Network)。
Paper:
Policy Gradient:Policy gradient methods for reinforcement learning with function approximation
DQN: Playing Atari with Deep Reinforcement Learning
NatureDQN:Human-level control through deep reinforcement learning
Github:https://github.com/xiaochus/Deep-Reinforcement-Learning-Practice
環境
- Python 3.6
- Tensorflow-gpu 1.8.0
- Keras 2.2.2
- Gym 0.10.8
Gym
Gym 是 OpenAI 發布的用于開發和比較強化學習算法的工具包。使用它我們可以讓 AI 智能體做很多事情,比如行走、跑動,以及進行多種游戲。在這個Demo中,我們使用的是車桿游戲(Cart-Pole)這個小游戲。
游戲規則很簡單,游戲里面有一個小車,上有豎著一根桿子。小車需要左右移動來保持桿子豎直。如果桿子傾斜的角度大于15°,那么游戲結束。小車也不能移動出一個范圍(中間到兩邊各2.4個單位長度)。
Cart-Pole:
Cart-Pole世界包括一個沿水平軸移動的車和一個固定在車上的桿子。 在每個時間步,你可以觀察它的位置(x),速度(x_dot),角度(theta)和角速度(theta_dot)。 這是這個世界的可觀察的狀態。 在任何狀態下,車只有兩種可能的行動:向左移動或向右移動。換句話說,Cart-Pole的狀態空間有四個維度的連續值,行動空間有一個維度的兩個離散值。
首先安裝gym:
pip install gym
gym嘗試:
# -*- coding: utf-8 -*-
import gym
import numpy as np
def try_gym():
# 使用gym創建一個CartPole環境
# 這個環境可以接收一個action,返回執行action后的觀測值,獎勵與游戲是否結束
env = gym.make('CartPole-v0')
# 重置游戲環境
env.reset()
# 游戲輪數
random_episodes = 0
# 每輪游戲的Reward總和
reward_sum = 0
count = 0
while random_episodes < 10:
# 渲染顯示游戲效果
env.render()
# 隨機生成一個action,即向左移動或者向右移動。
# 然后接收執行action之后的反饋值
observation, reward, done, _ = env.step(np.random.randint(0, 2))
reward_sum += reward
count += 1
# 如果游戲結束,打印Reward總和,重置游戲
if done:
random_episodes += 1
print("Reward for this episode was: {}, turns was: {}".format(reward_sum, count))
reward_sum = 0
count = 0
env.reset()
if __name__ == '__main__':
try_gym()
我們輸出的是每一輪游戲從開始到結束得到的Reward的總和與操作次數,輸出結果如下:
Reward for this episode was: 20.0, turns was: 20
Reward for this episode was: 26.0, turns was: 26
Reward for this episode was: 18.0, turns was: 18
Reward for this episode was: 25.0, turns was: 25
Reward for this episode was: 25.0, turns was: 25
Reward for this episode was: 23.0, turns was: 23
Reward for this episode was: 29.0, turns was: 29
Reward for this episode was: 17.0, turns was: 17
Reward for this episode was: 13.0, turns was: 13
Reward for this episode was: 27.0, turns was: 27
如果使用的環境是Anoconda 3,可能會出現下列錯誤:
raise NotImplementedError('abstract')
NotImplementedError: abstract
這是由于pyglet
引起的,需要替換成1.2.4版本:
pip uninstall pyglet
pip install pyglet==1.2.4
Policy Network
R.Sutton在2000年提出的Policy Gradient方法是RL中學習連續的行為控制策略的經典方法,其解決方案是通過一個概率分布函數πθ(st|θπ) 來表示每一步的最優策略,在每一步根據該概率分布進行action采樣獲得當前的最佳action取值,即: at~πθ(st|θπ)。生成action的過程本質上是一個隨機過程;最后學習到的策略,也是一個隨機策略(stochastic policy)。
Policy Network是一種典型的蒙特卡洛方法,是在一個episode結束時對discount reward進行學習,其實現流程如下:
(1)首先構建神經網絡,網絡的輸入為obervation,網絡的輸出為action=1的概率。
(2)在一個episode結束時(游戲勝利或死亡),將env重置,即observation恢復到了初始狀態。下一次循環時,輸入observation,輸出一個概率值p0。根據概率p0選取一個action輸入到環境中,獲取到新的observation和reward。記錄[observation, action, reward]作為后續訓練的數據。
(3)reward為大于0的數,根據上面的action得到reward,將整個episode的reward放到一個序列里,然后計算discount_reward。
(4)攢夠個batch的episode,進行梯度下降更新。損失函數分為兩部分,首先使用binary_crossentropy計算action的交叉熵損失,然后與discount_reward相乘得到最終損失。
使用keras實現的Policy Network如下所示:
# -*- coding: utf-8 -*-
import os
import gym
import numpy as np
from keras.layers import Input, Dense
from keras.models import Model
from keras.optimizers import Adam
import keras.backend as K
class PG:
def __init__(self):
self.model = self.build_model()
if os.path.exists('pg.h5'):
self.model.load_weights('pg.h5')
self.env = gym.make('CartPole-v0')
self.gamma = 0.95
def build_model(self):
"""基本網絡結構.
"""
inputs = Input(shape=(4,), name='ob_input')
x = Dense(16, activation='relu')(inputs)
x = Dense(16, activation='relu')(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs=inputs, outputs=x)
return model
def loss(self, y_true, y_pred):
"""損失函數.
Arguments:
y_true: (action, reward)
y_pred: action_prob
Returns:
loss: reward loss
"""
action_pred = y_pred
action_true, discount_episode_reward = y_true[:, 0], y_true[:, 1]
# 二分類交叉熵損失
action_true = K.reshape(action_true, (-1, 1))
loss = K.binary_crossentropy(action_true, action_pred)
# 乘上discount_reward
loss = loss * K.flatten(discount_episode_reward)
return loss
def discount_reward(self, rewards):
"""Discount reward
Arguments:
rewards: 一次episode中的rewards
"""
# 以時序順序計算一次episode中的discount reward
discount_rewards = np.zeros_like(rewards, dtype=np.float32)
cumulative = 0.
for i in reversed(range(len(rewards))):
cumulative = cumulative * self.gamma + rewards[i]
discount_rewards[i] = cumulative
# normalization,有利于控制梯度的方差
discount_rewards -= np.mean(discount_rewards)
discount_rewards //= np.std(discount_rewards)
return list(discount_rewards)
def train(self, episode, batch):
"""訓練
Arguments:
episode: 游戲次數
batch: 一個batch包含幾次episode,每個batch更新一次梯度
Returns:
history: 訓練記錄
"""
self.model.compile(loss=self.loss, optimizer=Adam(lr=0.01))
history = {'episode': [], 'Batch_reward': [], 'Episode_reward': [], 'Loss': []}
episode_reward = 0
states = []
actions = []
rewards = []
discount_rewards = []
for i in range(episode):
observation = self.env.reset()
erewards = []
while True:
x = observation.reshape(-1, 4)
prob = self.model.predict(x)[0][0]
# 根據隨機概率選擇action
action = np.random.choice(np.array(range(2)), size=1, p=[1 - prob, prob])[0]
observation, reward, done, _ = self.env.step(action)
# 記錄一個episode中產生的數據
states.append(x[0])
actions.append(action)
erewards.append(reward)
rewards.append(reward)
if done:
# 一次episode結束后計算discount rewards
discount_rewards.extend(self.discount_reward(erewards))
break
# 保存batch個episode的數據,用這些數據更新模型
if i != 0 and i % batch == 0:
batch_reward = sum(rewards)
episode_reward = batch_reward / batch
# 輸入X為狀態, y為action與discount_rewards,用來與預測出來的prob計算損失
X = np.array(states)
y = np.array(list(zip(actions, discount_rewards)))
loss = self.model.train_on_batch(X, y)
history['episode'].append(i)
history['Batch_reward'].append(batch_reward)
history['Episode_reward'].append(episode_reward)
history['Loss'].append(loss)
print('Episode: {} | Batch reward: {} | Episode reward: {} | loss: {:.3f}'.format(i, batch_reward, episode_reward, loss))
episode_reward = 0
states = []
actions = []
rewards = []
discount_rewards = []
self.model.save_weights('dpg.h5')
return history
def play(self):
"""使用訓練好的模型測試游戲.
"""
observation = self.env.reset()
count = 0
reward_sum = 0
random_episodes = 0
while random_episodes < 10:
self.env.render()
x = observation.reshape(-1, 4)
prob = self.model.predict(x)[0][0]
action = 1 if prob > 0.5 else 0
observation, reward, done, _ = self.env.step(action)
count += 1
reward_sum += reward
if done:
print("Reward for this episode was: {}, turns was: {}".format(reward_sum, count))
random_episodes += 1
reward_sum = 0
count = 0
observation = self.env.reset()
if __name__ == '__main__':
model = PG()
history = model.train(5000, 5)
model.play()
訓練結果與測試結果如下所示,可以看出隨著訓練次數的增加,Policy Network模型在游戲中獲得Reward不斷的增加,并且Loss不斷降低。在完成5000次Episode的訓練后進行模型測試, 相比隨機操作來說Policy Network模型能達到200 reward,由于到達200個reward之后游戲也會結束,因此Policy Network可以說是解決了這個問題。
但是根據我的實驗,Policy Network訓練起來并不穩定,模型參數初始化對訓練效果也有著較大的影響,需要多次嘗試。有時reward收斂一段時間后又會快速下降,出現周期性的變化,從圖中也可以看出訓練過程的不穩定。
Episode: 5 | Batch reward: 120.0 | Episode reward: 24.0 | loss: -0.325
Episode: 10 | Batch reward: 67.0 | Episode reward: 13.4 | loss: -0.300
Episode: 15 | Batch reward: 128.0 | Episode reward: 25.6 | loss: -0.326
Episode: 20 | Batch reward: 117.0 | Episode reward: 23.4 | loss: -0.332
Episode: 25 | Batch reward: 122.0 | Episode reward: 24.4 | loss: -0.330
Episode: 30 | Batch reward: 97.0 | Episode reward: 19.4 | loss: -0.339
Episode: 35 | Batch reward: 120.0 | Episode reward: 24.0 | loss: -0.331
......
Episode: 4960 | Batch reward: 973.0 | Episode reward: 194.6 | loss: -0.228
Episode: 4965 | Batch reward: 1000.0 | Episode reward: 200.0 | loss: -0.224
Episode: 4970 | Batch reward: 881.0 | Episode reward: 176.2 | loss: -0.238
Episode: 4975 | Batch reward: 1000.0 | Episode reward: 200.0 | loss: -0.213
Episode: 4980 | Batch reward: 974.0 | Episode reward: 194.8 | loss: -0.229
Episode: 4985 | Batch reward: 862.0 | Episode reward: 172.4 | loss: -0.235
Episode: 4990 | Batch reward: 914.0 | Episode reward: 182.8 | loss: -0.233
Episode: 4995 | Batch reward: 737.0 | Episode reward: 147.4 | loss: -0.254
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 200.0, turns was: 200
DQN
DQN是一種典型的時序差分方法,與Policy Network不同,DQN對時刻n與時刻n+1的數據進行學習,這樣話其產生的方差要小于蒙特卡洛方法。常用的DQN算法是在15年提出來的Nature DQN,這里使用Nature DQN為例。
DQN使用單個網絡來進行選擇動作和計算目標Q值;Nature DQN使用了兩個網絡,一個當前主網絡用來選擇動作,更新模型參數,另一個目標網絡用于計算目標Q值,兩個網絡的結構是一模一樣的。目標網絡的網絡參數不需要迭代更新,而是每隔一段時間從當前主網絡復制過來,即延時更新,這樣可以減少目標Q值和當前的Q值相關性。Nature DQN和DQN相比,除了用一個新的相同結構的目標網絡來計算目標Q值以外,其余部分基本是完全相同的。
Nature DQN的實現流程如下:
(1)首先構建神經網絡,一個主網絡,一個目標網絡,他們的輸入都為obervation,輸出為不同action對應的Q值。
(2)在一個episode結束時(游戲勝利或死亡),將env重置,即observation恢復到了初始狀態observation,通過貪婪選擇法ε-greedy選擇action。根據選擇的action,獲取到新的next_observation、reward和游戲狀態。將[observation, action, reward, next_observation, done]放入到經驗池中。經驗池有一定的容量,會將舊的數據刪除。
(3)從經驗池中隨機選取batch個大小的數據,計算出observation的Q值作為Q_target。對于done為False的數據,使用reward和next_observation計算discount_reward。然后將discount_reward更新到Q_traget中。
(4)每一個action進行一次梯度下降更新,使用MSE作為損失函數。注意與DPG不同,參數更新不是發生在每次游戲結束,而是發生在游戲進行中的每一步。
(5)每個batch我們更新參數epsilon,egreedy的epsilon是不斷變小的,也就是隨機性不斷變小。
(6)每隔固定的步數,從主網絡中復制參數到目標網絡。
使用keras實現的Nature DQN如下所示:
# -*- coding: utf-8 -*-
import os
import gym
import random
import numpy as np
from collections import deque
from keras.layers import Input, Dense
from keras.models import Model
from keras.optimizers import Adam
import keras.backend as K
class DQN:
def __init__(self):
self.model = self.build_model()
self.target_model = self.build_model()
self.update_target_model()
if os.path.exists('dqn.h5'):
self.model.load_weights('dqn.h5')
# 經驗池
self.memory_buffer = deque(maxlen=2000)
# Q_value的discount rate,以便計算未來reward的折扣回報
self.gamma = 0.95
# 貪婪選擇法的隨機選擇行為的程度
self.epsilon = 1.0
# 上述參數的衰減率
self.epsilon_decay = 0.995
# 最小隨機探索的概率
self.epsilon_min = 0.01
self.env = gym.make('CartPole-v0')
def build_model(self):
"""基本網絡結構.
"""
inputs = Input(shape=(4,))
x = Dense(16, activation='relu')(inputs)
x = Dense(16, activation='relu')(x)
x = Dense(2, activation='linear')(x)
model = Model(inputs=inputs, outputs=x)
return model
def update_target_model(self):
"""更新target_model
"""
self.target_model.set_weights(self.model.get_weights())
def egreedy_action(self, state):
"""ε-greedy選擇action
Arguments:
state: 狀態
Returns:
action: 動作
"""
if np.random.rand() <= self.epsilon:
return random.randint(0, 1)
else:
q_values = self.model.predict(state)[0]
return np.argmax(q_values)
def remember(self, state, action, reward, next_state, done):
"""向經驗池添加數據
Arguments:
state: 狀態
action: 動作
reward: 回報
next_state: 下一個狀態
done: 游戲結束標志
"""
item = (state, action, reward, next_state, done)
self.memory_buffer.append(item)
def update_epsilon(self):
"""更新epsilon
"""
if self.epsilon >= self.epsilon_min:
self.epsilon *= self.epsilon_decay
def process_batch(self, batch):
"""batch數據處理
Arguments:
batch: batch size
Returns:
X: states
y: [Q_value1, Q_value2]
"""
# 從經驗池中隨機采樣一個batch
data = random.sample(self.memory_buffer, batch)
# 生成Q_target。
states = np.array([d[0] for d in data])
next_states = np.array([d[3] for d in data])
y = self.model.predict(states)
q = self.target_model.predict(next_states)
for i, (_, action, reward, _, done) in enumerate(data):
target = reward
if not done:
target += self.gamma * np.amax(q[i])
y[i][action] = target
return states, y
def train(self, episode, batch):
"""訓練
Arguments:
episode: 游戲次數
batch: batch size
Returns:
history: 訓練記錄
"""
self.model.compile(loss='mse', optimizer=Adam(1e-3))
history = {'episode': [], 'Episode_reward': [], 'Loss': []}
count = 0
for i in range(episode):
observation = self.env.reset()
reward_sum = 0
loss = np.infty
done = False
while not done:
# 通過貪婪選擇法ε-greedy選擇action。
x = observation.reshape(-1, 4)
action = self.egreedy_action(x)
observation, reward, done, _ = self.env.step(action)
# 將數據加入到經驗池。
reward_sum += reward
self.remember(x[0], action, reward, observation, done)
if len(self.memory_buffer) > batch:
# 訓練
X, y = self.process_batch(batch)
loss = self.model.train_on_batch(X, y)
count += 1
# 減小egreedy的epsilon參數。
self.update_epsilon()
# 固定次數更新target_model
if count != 0 and count % 20 == 0:
self.update_target_model()
if i % 5 == 0:
history['episode'].append(i)
history['Episode_reward'].append(reward_sum)
history['Loss'].append(loss)
print('Episode: {} | Episode reward: {} | loss: {:.3f} | e:{:.2f}'.format(i, reward_sum, loss, self.epsilon))
self.model.save_weights('dqn.h5')
return history
def play(self):
"""使用訓練好的模型測試游戲.
"""
observation = self.env.reset()
count = 0
reward_sum = 0
random_episodes = 0
while random_episodes < 10:
self.env.render()
x = observation.reshape(-1, 4)
q_values = self.model.predict(x)[0]
action = np.argmax(q_values)
observation, reward, done, _ = self.env.step(action)
count += 1
reward_sum += reward
if done:
print("Reward for this episode was: {}, turns was: {}".format(reward_sum, count))
random_episodes += 1
reward_sum = 0
count = 0
observation = self.env.reset()
self.env.close()
if __name__ == '__main__':
model = DQN()
history = model.train(600, 32)
model.play()
訓練結果與測試結果如下所示,可以看出隨著訓練次數的增加,DQN模型在游戲中獲得Reward不斷的增加,并且Loss不斷降低。在batch=32的條件下500次Episode的訓練后進行模型測試, DQN也有不錯的表現,如果進一步訓練應該能達到和Policy Network同樣的效果。
相比Policy Network,DQN的訓練過程更穩定一些,但是DQN有個問題,就是它并不一定能保證Q網絡的收斂。也就是說,我們不一定可以得到收斂后的Q網絡參數,這會導致我們訓練出的模型效果很差,因此也需要反復嘗試選取最好的模型。
Episode: 0 | Episode reward: 11.0 | loss: inf | e:1.00
Episode: 5 | Episode reward: 23.0 | loss: 0.816 | e:0.67
Episode: 10 | Episode reward: 18.0 | loss: 2.684 | e:0.46
Episode: 15 | Episode reward: 11.0 | loss: 3.662 | e:0.34
Episode: 20 | Episode reward: 16.0 | loss: 2.702 | e:0.23
Episode: 25 | Episode reward: 10.0 | loss: 4.092 | e:0.18
Episode: 30 | Episode reward: 12.0 | loss: 3.734 | e:0.13
...
Episode: 460 | Episode reward: 111.0 | loss: 6.325 | e:0.01
Episode: 465 | Episode reward: 180.0 | loss: 0.046 | e:0.01
Episode: 470 | Episode reward: 141.0 | loss: 0.136 | e:0.01
Episode: 475 | Episode reward: 169.0 | loss: 0.110 | e:0.01
Episode: 480 | Episode reward: 200.0 | loss: 0.095 | e:0.01
Episode: 485 | Episode reward: 200.0 | loss: 0.024 | e:0.01
Episode: 490 | Episode reward: 200.0 | loss: 0.066 | e:0.01
Episode: 495 | Episode reward: 146.0 | loss: 0.022 | e:0.01
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 196.0, turns was: 196
Reward for this episode was: 198.0, turns was: 198
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 199.0, turns was: 199
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 193.0, turns was: 193
Reward for this episode was: 200.0, turns was: 200
Reward for this episode was: 189.0, turns was: 189
Reward for this episode was: 200.0, turns was: 200
對比
(1)Policy Network可以處理連續的action,而DQN則只能處理離散問題,通過枚舉的方式來實現,連續的action只能離散化后再處理。
(2)Policy Network通過輸出的action概率值大小隨機選擇action,而DQN則通過貪婪選擇法ε-greedy選擇action。
(2)DQN的更新是一個一個的reward進行更新,即當前的reward只跟鄰近的一個相關;Policy Network則將一個episode的reward全部保存起來,然后用discount的方式修正reward,標準化后進行更新。